Angles orientés de vecteurs Trigonométrie

Christophe ROSSIGNOL*

Année scolaire 2017/2018

Table des matières

1	Mes	sures d'angles orientés de vecteurs	3
	1.1	Cercle trigonométrique – mesures d'arcs orientés	3
	1.2	Angles orientés de vecteurs unitaires	4
	1.3	Angles orientés de vecteurs – Cas général	5
2	Trig	gonométrie	6
	2.1	Cosinus et sinus	6
	2.2	Quelques relations	7
	2.3	Angles associés	7
3	Pro	priétés des angles orientés	10
	3.1	Angles orientés et colinéarité	10
	3.2	Relation de Chasles	10

^{*}Ce cours est placé sous licence Creative Commons BY-SA http://creativecommons.org/licenses/by-sa/2.0/fr/

Table des figures

1	Le cercle trigonométrique	3
2	Exemples de mesures d'arcs orientés	3
3	Angles orientés de vecteurs unitaires	4
4	Angle orienté de vecteurs – cas général	5
5	Cosinus et sinus	6
6	Angles remarquables	7
7	Cosinus et sinus de $-x$	8
8	Cosinus et sinus de $\pi - x$	8
9	Cosinus et sinus de $\pi + x$	9
10	Cosinus et sinus de $\frac{\pi}{2} - x$	9
11	Cosinus et sinus de $\frac{\pi}{2} + x$	0
12	Quelques cas particuliers	1
Liste	des tableaux	
1	Conversion degrés-radians	4
2	Valeurs remarquables de cosinus, sinus et tangente	7

Activité 1 (fp): Arcs orientés sur un cercle

1 Mesures d'angles orientés de vecteurs

1.1 Cercle trigonométrique – mesures d'arcs orientés

Définition : On appelle cercle trigonométrique un cercle de centre O, de rayon 1, orienté dans le sens direct (voir figure 1).

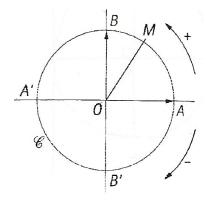


FIGURE 1 – Le cercle trigonométrique

L'arc orienté \widehat{AB} a une infinité de mesures : $\frac{\pi}{2}$, $-\frac{3\pi}{2}$, $\frac{5\pi}{2}$... Elles sont toutes définies au nombre de « tours » près. Toute mesure de l'arc orienté \widehat{AB} est donc de la forme $\frac{\pi}{2} + 2k\pi$, où $k \in \mathbb{Z}$. Plus généralement :

Propriété : Soit A et M deux points du cercle trigonométrique.

Si l est une mesure de l'arc orienté \widehat{AM} , alors toutes les mesures de cet arc sont de la forme $l+2k\pi$, où $k\in\mathbb{Z}$.

On note alors : $\widehat{AM} = l + 2k\pi$ $(k \in \mathbb{Z})$ ou $\widehat{AM} = l$ [2 π].

La deuxième notation se lit : « l modulo 2π ».

Exemples : A l'aide des propriétés géométriques de la figure 2, on a :

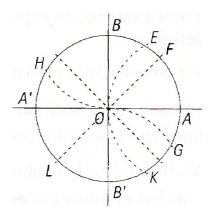


FIGURE 2 – Exemples de mesures d'arcs orientés

$$\widehat{AE} = \tfrac{\pi}{3} \, \left[2\pi \right]; \, \widehat{AF} = \tfrac{\pi}{4} \, \left[2\pi \right]; \, \widehat{AG} = -\tfrac{\pi}{6} \, \left[2\pi \right]; \, \widehat{AH} = \tfrac{5\pi}{6} \, \left[2\pi \right]; \, \widehat{AK} = -\tfrac{\pi}{3} \, \left[2\pi \right] \, \text{et} \, \, \widehat{AL} = -\tfrac{3\pi}{4} \, \left[2\pi \right] \, \widehat{AH} = -\tfrac{5\pi}{6} \, \left[2\pi \right]; \, \widehat{AH} = -\tfrac{5\pi}{6} \, \left[2\pi \right]; \, \widehat{AH} = -\tfrac{\pi}{3} \, \left$$

Exercices: 30, 33 page 205 et 37 page 206 ¹ [TransMath]

^{1.} Utilisation du cercle trigonométrique.

1.2 Angles orientés de vecteurs unitaires

Définition: Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs unitaires ($\|\overrightarrow{u}\| = \|\overrightarrow{v}\| = 1$).

Il existe deux points M et N du cercle trigonométrique tels que $\overrightarrow{OM} = \overrightarrow{u}$ et $\overrightarrow{ON} = \overrightarrow{v}$ (voir figure 3).

On appelle mesure de l'angle orienté de vecteurs $(\overrightarrow{u}, \overrightarrow{v})$ toute mesure de l'arc orienté \widehat{MN} . On utilisera donc les mêmes notations.

L'unité de mesure est le radian (noté rad).

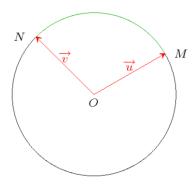


Figure 3 – Angles orientés de vecteurs unitaires

Remarque : π rad correspond à 180°. Un tableau de proportionnalité permet donc de passer facilement des degrés aux radians (et réciproquement), voir tableau 1.

Mesure de l'angle en radians	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
Mesure de l'angle en degré	0	30	45	60	90	180

Table 1 – Conversion degrés-radians

On passe de la première à la deuxième ligne en multipliant par $\frac{180}{\pi}.$

Exemples: On se reportera à la figure 2.

1.
$$(\overrightarrow{OA}, \overrightarrow{OE}) = \frac{\pi}{3} [2\pi]$$
 (exemples de mesure : $\frac{\pi}{3}$; $\frac{\pi}{3} + 2\pi = \frac{7\pi}{3}$; $\frac{\pi}{3} - 2\pi = -\frac{5\pi}{3}$, $\frac{\pi}{3} + 4\pi = \frac{13\pi}{3}$)

2.
$$\left(\overrightarrow{OA}\,,\,\overrightarrow{OG}\right)=-\frac{\pi}{6}\,\left[2\pi\right]$$
 (exemples de mesure : $-\frac{\pi}{6}\,;\,-\frac{\pi}{6}+2\pi=\frac{11\pi}{6}$)

3.
$$\left(\overrightarrow{OF}\,,\,\overrightarrow{OL}\right)=\pi\,\left[2\pi\right]$$
 (exemples de mesure : $\pi\,;\,3\pi\,;\,-\pi\,;\,5\pi$)

4.
$$(\overrightarrow{OE}, \overrightarrow{OK}) = -\frac{2\pi}{3} [2\pi]$$

Définition : Une seule mesure de l'angle orienté $(\overrightarrow{u}, \overrightarrow{v})$ appartient à l'intervalle $]-\pi; \pi]$. Cette mesure est appelée mesure principale de l'angle $(\overrightarrow{u}, \overrightarrow{v})$.

Exercice: Trouver la mesure principale de l'angle $\frac{17\pi}{2}$.

On sait que la mesure principale est de la forme $\frac{17\pi}{3} + 2k\pi$ (avec $k \in \mathbb{Z}$) et qu'elle doit être dans l'intervalle $]-\pi$; π]. On a donc :

$$-\pi < \frac{17\pi}{3} + 2k\pi \le \pi$$

$$-1 < \frac{17}{3} + 2k \le 1 \quad \text{(en divisant par}\pi)$$

$$-1 - \frac{17}{3} < 2k \le 1 - \frac{17}{3}$$

$$-\frac{20}{3} < 2k \le -\frac{14}{3}$$

$$-\frac{10}{3} < k \le -\frac{7}{3}$$

De plus, on sait que $k \in \mathbb{Z}$. Or, le seul entier relatif vérifiant l'encadrement précédent est $k=-\frac{9}{3}=-3$. La mesure principale de l'angle est donc : $\frac{17\pi}{3}+2\times(-3)\times\pi=\frac{17\pi}{3}-6\pi=\frac{17\pi-18\pi}{3}=-\frac{\pi}{3}$.

Exercices: 31 page 205 et 36 page $206^{2} - 34$ page $205^{3} - 35$ page 205^{4} [TransMath]

1.3 Angles orientés de vecteurs – Cas général

Définition : Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls. On note \mathcal{C} le cercle trigonométrique de centre O. On se référera à la figure 4.

On pose $\overrightarrow{u} = \overrightarrow{OM}$ et $\overrightarrow{v} = \overrightarrow{ON}$.

les demi-droites [OM) et [ON) coupent respectivement le cercle trigonométrique $\mathcal C$ en A et B.

Les vecteurs \overrightarrow{OA} et \overrightarrow{OB} sont unitaires et respectivement de même direction et de même sens que \overrightarrow{u} et \overrightarrow{v} .

On appelle alors mesure de l'angle orienté $(\overrightarrow{u}, \overrightarrow{v})$, toute mesure de l'angle orienté $(\overrightarrow{OA}, \overrightarrow{OB})$.

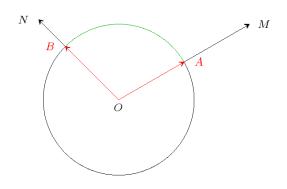


FIGURE 4 – Angle orienté de vecteurs – cas général

Exercices: 29, 32 page 205 et 38, 40, 42 page 206 ⁵ – 43 page 206 ⁶ [TransMath]

- 2. Angles orientés de vecteurs unitaires.
- 3. Mesure principale.
- 4. Algorithmique.
- 5. Angles orientés de vecteurs.
- 6. Ensemble de points.

2 Trigonométrie

2.1 Cosinus et sinus

Définition 1 : On dit qu'un repère $(O; \overrightarrow{i}; \overrightarrow{j})$ du plan orienté est orthonormal direct si :

$$\|\overrightarrow{\imath}\| = \|\overrightarrow{\jmath}\| = 1$$
 et $(\overrightarrow{\imath}; \overrightarrow{\jmath}) = +\frac{\pi}{2} [2\pi]$

Définition 2 : Soit C le cercle trigonométrique de centre O et A, B deux points du cercle C tels que le repère O in O is soit orthonormal direct (voir figure 5).

Soit x un réel.

Il existe un unique point M du cercle trigonométrique \mathcal{C} tel que $(\overrightarrow{OA}; \overrightarrow{OM}) = x [2\pi]$.

On appelle cosinus et sinus de x (notés $\cos x$ et $\sin x$) les coordonnées du point M dans le repère O; \overrightarrow{OA} ; \overrightarrow{OB} .

 $\cos x$: abscisse du point M $\sin x$: ordonnée du point M.

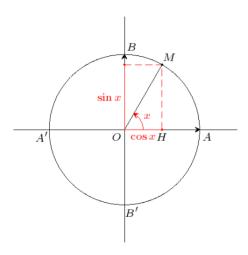


Figure 5 – Cosinus et sinus

Remarques : 1. Si $k \in \mathbb{Z}$, $x + 2k\pi$ est une autre mesure de l'angle orienté $(\overrightarrow{OA}; \overrightarrow{OM})$. On a donc :

$$\cos(x + 2k\pi) = \cos x$$
$$\sin(x + 2k\pi) = \sin x$$

2. A(1; 0) donc: $\cos(0) = 1$ et $\sin(0) = 0$. B(0; 1) donc: $\cos(\frac{\pi}{2}) = 0$ et $\sin(\frac{\pi}{2}) = 1$.

A'(-1; 0) donc : $\cos(\pi) = -1$ et $\sin(\pi) = 0$.

B'(0; -1) donc : $\cos(-\frac{\pi}{2}) = 0$ et $\sin(-\frac{\pi}{2}) = -1$.

3. Le triangle OHM est rectangle en H donc, d'après le théorème de PYTHAGORE :

$$OH^2 + HM^2 = OM^2$$

Or, OM = 1, $OH^2 = (\cos x)^2$ et $HM^2 = (\sin x)^2$. On a donc :

$$\left(\cos x\right)^2 + \left(\sin x\right)^2 = 1$$

Dans toute la suite, on notera : $\cos^2 x = (\cos x)^2$ et $\sin^2 x = (\sin x)^2$. La relation précédente devient alors :

$$\cos^2 x + \sin^2 x = 1$$

Quelques relations 2.2

On a déjà les relations suivantes :

Propriété : Pour tout $x \in \mathbb{R}$ et tout $k \in \mathbb{Z}$: $\cos\left(x+2k\pi\right)$ $\cos x$ $\sin\left(x+2k\pi\right)$ $\sin x$ $\cos^2 x + \sin^2 x$ 1 $-1 \le$ $\cos x$ $-1 \le$ $\sin x$

On rappelle de plus que, si $\cos x \neq 0$, $\tan x = \frac{\sin x}{\cos x}$. Les cosinus, sinus et tangente des angles remarquables sont données dans le tableau 2.

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1
$\sin x$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0
$\tan x$	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$		0

Table 2 – Valeurs remarquables de cosinus, sinus et tangente

Remarque: Pour retenir tous les résultats du tableau 2, on peut s'aider du cercle trigonométrique (voir figure 6).

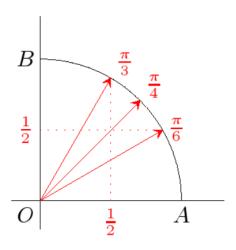


FIGURE 6 – Angles remarquables

Exercice : Calculer $\sin \alpha$ et $\cos \beta$ sachant que : — $\cos \alpha = 0, 6$ et $-\frac{\pi}{2} < \alpha < 0$ $-\sin\beta = 0.8 \text{ et } \frac{\pi}{2} < \beta < \pi$

Exercices: 59, 60, 61 page 208 ⁷ – 44 page 206 et 89 page 211 ⁸[TransMath]

2.3Angles associés

Dans toute cette section, x désigne un réel et M le point associé au réel x sur le cercle trigonométrique suivant la **définition 2** du 2.1.

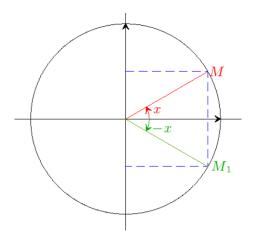


FIGURE 7 – Cosinus et sinus de -x

Cosinus et sinus de -x: voir figure 7.

 $M(\cos x; \sin x)$ et $M_1(\cos(-x); \sin(-x))$.

Comme M et M_1 sont symétriques par rapport à l'axe des abscisses , on en déduit que :

Cosinus et sinus de
$$-x$$

$$\cos(-x) = \cos x$$

$$\sin(-x) = -\sin x$$

Cosinus et sinus de $\pi - x$: voir figure 8.

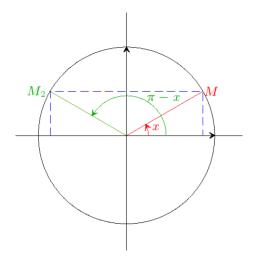


FIGURE 8 – Cosinus et sinus de $\pi-x$

 $M\left(\cos x\,;\,\sin x\right)$ et $M_{2}\left(\cos\left(\pi-x\right)\,;\,\sin\left(\pi-x\right)\right)$. Comme M et M_{2} sont symétriques par rapport à l'axe des ordonnées , on en déduit que :

Cosinus et sinus de $\pi - x$ $\cos(\pi - x) = -\cos x$ $\sin(\pi - x) = \sin x$

Cosinus et sinus de $\pi + x$: voir figure 9.

- 7. Lignes trigonométriques.
- 8. Repérage polaire.

TRIGONOMÉTRIE 2.3 Angles associés

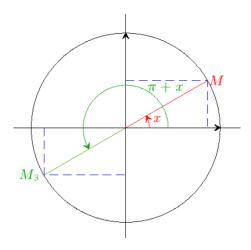


FIGURE 9 – Cosinus et sinus de $\pi + x$

 $M\left(\cos x\,;\,\sin x\right)$ et $M_{3}\left(\cos\left(\pi+x\right)\,;\,\sin\left(\pi+x\right)\right)$. Comme M et M_{3} sont symétriques par rapport à l'origine du repère , on en déduit que :

Cosinus et sinus de
$$\pi + x$$

$$\cos(\pi + x) = -\cos x$$

$$\sin(\pi + x) = -\sin x$$

Cosinus et sinus de $\frac{\pi}{2} - x$: voir figure 10.

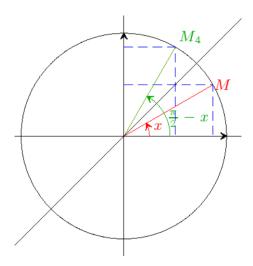


Figure 10 – Cosinus et sinus de $\frac{\pi}{2}-x$

 $M\left(\cos x\,;\,\sin x
ight)$ et $M_4\left(\cos\left(\frac{\pi}{2}-x
ight)\,;\,\sin\left(\frac{\pi}{2}-x
ight)
ight)$. Comme M et M_4 sont symétriques par rapport à la droite d'équation y=x, on en déduit que :

Cosinus et sinus de
$$\pi + x$$

$$\cos\left(\frac{\pi}{2} - x\right) = \sin x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Cosinus et sinus de $\frac{\pi}{2} + x$: voir figure 11.

 $M(\cos x; \sin x)$ et $M_5(\cos(\frac{\pi}{2}+x); \sin(\frac{\pi}{2}+x))$.

Comme M_4 et M_5 sont symétriques par rapport à l'axe des ordonnées , on en déduit que :

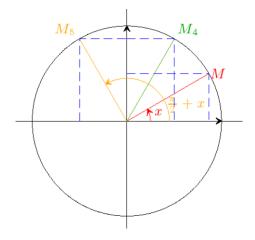


FIGURE 11 – Cosinus et sinus de $\frac{\pi}{2} + x$

Cosinus et sinus de
$$\frac{\pi}{2} + x$$

$$\cos\left(\frac{\pi}{2} + x\right) = -\sin x$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x$$

Remarque : Pour retenir ces relations, il est vivement conseillé de se référer au cercle trigonométrique.

Exemples: 1. $\cos(\frac{2\pi}{3}) = \cos(\pi - \frac{\pi}{3}) = -\cos(\frac{\pi}{3}) = -\frac{1}{2}$.

2.
$$\cos\left(\frac{7\pi}{6}\right) = \cos\left(\pi + \frac{\pi}{6}\right) = -\cos\left(\frac{\pi}{6}\right) = -\frac{\sqrt{3}}{2}$$
.

3.
$$\sin\left(-\frac{\pi}{4}\right) = -\sin\left(\frac{\pi}{4}\right) = -\frac{\sqrt{2}}{2}$$
.

Exercices : 1, 2, 3 page 197 et 63 page $208^9 - 34$, 35 page 208 et 21 page $202^{10} - 22$ page $202^{11} - 5$, 6, 7, 8 page 198 et 68, 69 page $208^{12} - 70$ page 208 et 71, 72 page $209^{13} - 82$, 83, 84, 85 page 210^{14} [TransMath]

3 Propriétés des angles orientés

3.1 Angles orientés et colinéarité

Propriété: Soit \overrightarrow{u} et \overrightarrow{v} deux vecteurs non nuls.

- Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires et de même sens si et seulement si $(\overrightarrow{u}, \overrightarrow{v}) = 0$ [2 π].
- Les vecteurs \overrightarrow{u} et \overrightarrow{v} sont colinéaires et sens contraires si et seulement si $(\overrightarrow{u}, \overrightarrow{v}) = \pi [2\pi]$.

Remarque: On peut donc utiliser les angles orientés pour prouver un parallélisme ou un alignement.

3.2 Relation de Chasles

Théorème : Relation de Chasles (admis)

Soit \overrightarrow{u} , \overrightarrow{v} et \overrightarrow{w} trois vecteurs non nuls. Alors:

$$(\overrightarrow{u}, \overrightarrow{v}) + (\overrightarrow{v}, \overrightarrow{w}) = (\overrightarrow{u}, \overrightarrow{w}) [2\pi]$$

- 9. Angles associés.
- Lignes trigonométriques d'angles associés.
- 11. Utilisation d'angles orientés pour démontrer.
- 12. Équations trigonométriques.
- 13. Avec la calculatrice.
- 14. Équations plus difficiles.

RÉFÉRENCES RÉFÉRENCES

Quelques conséquences : Ces égalités sont illustrées sur la figure 12.

- 1. $(\overrightarrow{v}, \overrightarrow{u}) = -(\overrightarrow{u}, \overrightarrow{v}) [2\pi]$
- 2. $(\overrightarrow{u}, -\overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v}) + \pi [2\pi] \text{ et } (-\overrightarrow{u}, \overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v}) + \pi [2\pi]$
- 3. $(\overrightarrow{u}, \overrightarrow{v}) = (\overrightarrow{u}, \overrightarrow{v}) [2\pi]$

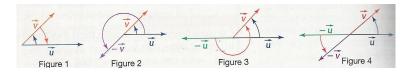


Figure 12 – Quelques cas particuliers

Exercices : 46 page 207^{15} – 12, 13, 15 page 200; 20 page 202 et 49, 50, 51, 54, 55, 56 page 207^{16} – 79, 80 page 210 et 90 page 211^{17} [TransMath]

Références

[TransMath] transMATH $1^{\hbox{\scriptsize re}}{\rm S},$ édition 2011 (NATHAN)

3, 5, 7, 10, 11

^{15.} Angles particuliers.

^{16.} Démontrer en utilisant la relation de Chasles.

^{17.} Plus difficiles.