Probabilités

Christophe ROSSIGNOL*

Année scolaire 2018/2019

Table des matières

1	Loi	oi de probabilité						
	1.1	Définitions	2					
	1.2	Modélisation d'expérience aléatoire	2					
	_							
2	Pro	babilité d'un événement	2					
	2.1	Vocabulaire des événements	2					
	2.2	Probabilité d'un événement	3					

^{*}Ce cours est placé sous licence Creative Commons BY-SA http://creativecommons.org/licenses/by-sa/2.0/fr/

Activité : Activités 1 1 (fp)

1 Loi de probabilité

1.1 Définitions

Définition : On appelle expérience aléatoire toute expérience ayant plusieurs issues (ou éventualités) possibles et dont on ne peut pas prévoir à l'avance laquelle de ces issues sera réalisée.

Ces éventualités sont notées e_1 ; e_2 ; ...; e_n .

Leur ensemble est noté Ω est est appelé univers.

On a donc $\Omega = \{e_1; e_2; \dots; e_n\}.$

Exemple : On lance un dé à 6 faces.

L'univers est $\Omega = \{1; 2; 3; 4; 5; 6\}.$

Définitions : — Chaque éventualité e_i est affecté d'une probabilité, c'est-à-dire d'un nombre noté p_i tel que :

$$0 \le p_i \le 1$$
 et $p_1 + p_2 + \dots + p_n = 1$

- On appelle loi de probabilité la donnée des p_i vérifiant ces conditions.
- Si tous les événements élémentaires ont la même probabilité, on dits qu'ils sont équiprobables, ou que la loi de probabilité p est équiprobable (ou équirépartie).

Exemple : On lance un dé à 6 faces bien équilibré. Chaque face ayant les mêmes chances d'apparaître, chaque éventualité a une probabilité de $\frac{1}{6}$. La loi de probabilité est donc :

e_i	1	2	3	4	5	6
p_i	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$	$\frac{1}{6}$

Remarque : De manière générale, si une expérience aléatoire est équiprobable et comporte n issues différentes, chacune des issues a une probabilité de $\frac{1}{n}$.

1.2 Modélisation d'expérience aléatoire

Activité: Activité 2² (fp)

Définition : Modéliser une expérience aléatoire, c'est choisir une loi de probabilité qui représente au mieux les chances de réalisation de chaque issue.

Remarque : Pour une expérience donnée, les distributions de fréquence pour des échantillons de taille n se rapprochent de la loi de probabilités lorsque n devient grand (voir le chapitre « Simulation - Fluctuation d'échantillonnage »).

2 Probabilité d'un événement

Activité: Activité 3³ (fp)

2.1 Vocabulaire des événements

Définition : Un événement A est une partie de l'univers Ω (on note $A \subset \Omega$).

Ø est l'événement impossible.

 Ω est l'événement certain.

Exemple: On lance un dé à 6 faces bien équilibré.

- 1. Choix de menus.
- 2. Avec deux dés.
- 3. Tirage de jetons.

— Des exemples d'événement :

A: « Obtenir un nombre pair »

B : « Obtenir un nombre inférieur ou égal à 2 »

B' : « Obtenir un nombre strictement supérieur à 4 »

C: « Obtenir 7 »

D : « Obtenir un nombre inférieur ou égal à 6 »

On a:

 $-A = \{2; 4; 6\}$

 $-B = \{1; 2\}$

- B' = $\{5; 6\}$

- C = \emptyset (événement impossible)

— D = $\{1; 2; 3; 4; 5; 6\} = \Omega$ (événement certain)

Définition : Soient A et B deux événements d'un univers Ω .

- L'événement $A \cap B$ est l'événement « A et B ».
- L'événement $A \cup B$ est l'événement « A ou B ».
- L'événement \overline{A} est l'événement « contraire de A » ou « non A ».
- Deux événements A et B sont incompatibles s'ils ne peuvent pas se réaliser en même temps, c'està-dire si $A \cap B = \emptyset$.

Exemple: On reprend les notations de l'exemple précédent.

- A \cap B est l'événement « Obtenir un nombre pair inférieur ou égal à 2 ».
 - $A \cap B = \{2\}$
- $A \cup B$ est l'événement « Obtenir un nombre pair ou un nombre inférieur ou égal à 2 ».
 - $A \cup B = \{1; 2; 4; 6\}$
- $\overline{\mathbf{A}}$ est l'événement « Obtenir un nombre impair ».
 - $\overline{A} = \{1; 3; 5\}$
- Les événements B et B' sont incompatibles.

Exercices: 34, 35 page 159 et 52, 53 page 162 ⁴ [TransMath]

2.2 Probabilité d'un événement

Propriété : La probabilité d'un événement A est la somme des probabilités des issues qui le composent. On la note p(A).

On a donc $0 \le p(A) \le 1$.

Remarques: 1. $p(\Omega) = 1$. L'ensemble Ω est un événement certain.

- 2. $p(\emptyset) = 0$. L'ensemble vide est un événement impossible.
- 3. Dans le cas de l'équi probabilité, si l'univers Ω comporte n issues, on a :

$$p_i = \frac{1}{n} \qquad \text{ et } \qquad p\left(\mathbf{A}\right) = \frac{\text{nombre d'éléments de A}}{\text{nombre d'éléments de }\Omega} = \frac{\text{nbre de cas favorables}}{\text{nbre de cas possibles}}$$

Propriété 1 : Si A est un événement :

$$p\left(\overline{\mathbf{A}}\right) = 1 - p\left(\mathbf{A}\right)$$

Exemple : On reprend les notations de l'exemple du 2.1

$$p(A) = \frac{3}{6} = \frac{1}{2} \text{ et } p(\overline{A}) = 1 - \frac{1}{2} = \frac{1}{2}.$$

Exercices : 1 page 149; 3 page 150; 38, 39 page 159 et 44 page $160^{\,5}$ – 49, 51 page $161^{\,6}$ – 4, 5, 7, 8 page 151 et 41, 45 page $160^{\,7}$ – 10, 11, 13, 16 page 153; 31 page 157; 66 page 164 et 69, 70 page $165^{\,8}$ – 32 page 157 et 61 page $163^{\,9}$ [TransMath]

- 4. Vocabulaire des probabilités.
- 5. Calculer la probabilité d'un événement.
- 6. Utiliser des fréquences.
- 7. Cas de l'équiprobabilité.
- 8. Modélisation à l'aide d'un arbre.
- 9. Cas d'un tirage simultané.

Propriété 2 : 1. Si A et B sont deux événements :

$$p(A \cup B) = p(A) + p(B) - p(A \cap B)$$

2. Si les événements A et B sont incompatibles :

$$p(A \cup B) = p(A) + p(B)$$

 $\mathbf{Exemple}$: On reprend les notations de l'exemple du 2.1

- $p(B) = \frac{2}{6} = \frac{1}{3}$ et $p(A \cap B) = \frac{1}{6}$ $p(A \cup B) = p(A) + p(B) p(A \cap B) = \frac{1}{2} + \frac{1}{3} \frac{1}{6} = \frac{4}{6} = \frac{2}{3}$ (on retrouve ce résultat directement en détaillant l'événement $A \cup B$.

Exercices : 19, 20, 22 page 155 et 54 page $162^{10} - 17$, 23, 25, 26 page 155; 55, 57 page 162 et 64, 68 page 164¹¹ [TransMath]

Références

[TransMath] Transmath Seconde, Nathan (édition 2010).

3, 4

^{10.} Utilisation des formules.

^{11.} Probabilité de l'intersection, de l'union.