Dérivation en un point

Nombre dérivée :

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

C'est le coefficient directeur de la tangente à la courbe au point d'abscisse a.

Équation de la tangente : y = f'(a)(x - a) + f(a)

Dérivées des fonctions usuelles

function f	dérivée f'	Domaine de dérivabilité	
f(x) = k (k constante)	f'(x) = 0	\mathbb{R}	
$f\left(x\right) =x$	f'(x) = 1	\mathbb{R}	
$f\left(x\right) = x^{2}$	f'(x) = 2x	\mathbb{R}	
$f(x) = x^3$	$f'(x) = 3x^2$	\mathbb{R}	
$f(x) = x^n \ (n \text{ entier } > 0)$	$f'(x) = nx^{n-1}$	\mathbb{R}	
$f\left(x\right) = \frac{1}{x}$	$f'(x) = -\frac{1}{x^2}$	$]-\infty$; 0[ou]0; $+\infty$ [
$f\left(x\right) = \frac{1}{x^2}$	$f'(x) = -\frac{2}{x^3}$	$]-\infty$; 0[ou]0; $+\infty$ [
$f(x) = \frac{1}{x^n} \ (n \text{ entier } > 0)$	$f'(x) = -\frac{n}{x^{n+1}}$	$]-\infty$; 0[ou]0; $+\infty$ [
$f\left(x\right) = \sqrt{x}$	$f'(x) = \frac{1}{2\sqrt{x}}$	$]0;+\infty[$	
$f\left(x\right) = \mathrm{e}^{x}$	$f'(x) = e^x$	\mathbb{R}	

Opérations sur les fonctions dérivées

	Opération	Dérivée	Conditions d'utilisation
Somme de deux fonctions	u + v	u' + v'	u et v dérivables sur I
Multiplication par une constante	ku	ku'	u dérivable sur I
Produit de deux fonctions	uv	u'v + uv'	u et v dérivables sur I
Inverse d'une fonction	$\frac{1}{v}$	$-\frac{v'}{v^2}$	u et v dérivables sur $IPour tout x \in I, v(x) \neq 0$
Quotient de deux fonctions	$\frac{u}{v}$	$\frac{u'v - uv'}{v^2}$	u et v dérivables sur $IPour tout x \in I, v(x) \neq 0$

Dérivée et sens de variation

Théorème fondamental (admis) : Soit f une fonction dérivable sur un intervalle I.

- Si, pour tout $x ext{ de } I$, $f'(x) \ge 0$ alors f est croissante sur I.
- Si, pour tout x de I, $f'(x) \le 0$ alors f est décroissante sur I.

 Si, pour tout x de I, $f'(x) \le 0$ alors f est constante sur I.