Primitives Équations différentielles

Christophe ROSSIGNOL*

Année scolaire 2020/2021

Table des matières

1	Notion d'équation différentielle				
2	Not	ion de primitive d'une fonction	2		
	2.1	Définition, exemple	2		
	2.2	Primitives des fonctions usuelles	2		
	2.3	Primitives et opérations sur les fonctions	2		
	2.4	Existence et ensemble des primitives	3		
	2.5	Méthodes classiques de recherche de primitives	4		
3 Résolution d'équations différentielles					
	3.1	Équations de la forme $y'=ay$	5		
	3.2	Équations de la forme $y' = ay + b$	6		
${f L}$	iste	des tableaux			
	1	Primitives des fonctions usuelles	3		
	2	Méthodes classiques de recherche de primitives	4		

^{*}Ce cours est placé sous licence Creative Commons BY-SA http://creativecommons.org/licenses/by-sa/2.0/fr/

1 Notion d'équation différentielle

Définition:

- Une équation différentielle est une équation dont l'inconnue est une fonction y. Cette équation fait intervenir la fonction y et ses dérivées successives y', y'', ...
- On appelle solution de l'équation différentielle toute fonction f dérivable vérifiant cette équation.
- Résoudre une équation différentielle, c'est trouver toutes les fonctions solutions.

Exemples:

- 1. La fonction $x \longrightarrow e^x$ est solution de l'équation différentielle y' = y.
- 2. La fonction $x \longrightarrow x^2$ est solution de l'équation différentielle y' = 2x.
- 3. Soit f la fonction définie sur \mathbb{R} par $f(x) = e^{-x}$. On a $f'(x) = -e^{-x}$ et $f''(x) = -(-e^{-x}) = e^{-x} = f(x)$. Donc la fonction f est solution de l'équation y'' = y.

Remarque : Les équations différentielles sont très utilisées en sciences expérimentales. On utilise dans ce cas une notation différente pour les dérivées. On note la dérivée $y' = \frac{dy}{dx}$ ou $y' = \frac{dy}{dt}$ et la dérivée seconde

$$y''=\frac{\mathrm{d}^2y}{\mathrm{d}x^2} \text{ ou } y''=\frac{\mathrm{d}^2y}{\mathrm{d}t^2}.$$
 Ces notations sont appelés notations différentielles.

Exercices: 1, 2, 3 page 207; 32, 34, 35 page 217¹ [Magnard]

$\mathbf{2}$ Notion de primitive d'une fonction

Définition, exemple 2.1

Définition : Soit f une fonction définie sur un intervalle I.

On appelle primitive de la fonction f sur l'intervalle I toute solution de l'équation différentielle y' = f. Ainsi, une fonction F est une primitive de f sur l'intervalle I si, pour tout $x \in I$, F'(x) = f(x).

Exemple: La fonction $x \longrightarrow x^2$ est solution de l'équation différentielle y' = 2x.

Donc la fonction $F(x) = x^2$ est une primitive, sur \mathbb{R} , de la fonction f(x) = 2x.

Exercices: 37, 38, 39, 41 page 218² - 81, 82 page 222³ -103 page 225⁴ [Magnard]

2.2Primitives des fonctions usuelles

Les résultats du tableau 1 se retrouvent facilement par une lecture « inversée » du tableau donnant les dérivées des fonctions usuelles. Dans ce tableau C désigne un nombre réel quelconque.

2.3 Primitives et opérations sur les fonctions

On tire facilement des règles de calcul sur les dérivées le résultat suivant :

Propriété : 1. Si F et G sont des primitives respectives de f et g sur un intervalle I, alors F+G est une primitive de f + g sur I.

2. Si F est une primitive de f sur I et si $k \in \mathbb{R}$, kF est une primitive de kf sur I.

- 1. Montrer qu'une fonction est solution d'une équation différentielle.
- 2. Premiers exemples de primitives
- 3. Étude complète d'une primitive.
- 4. Déterminer une primitive.

fonction f		Domaine de validité
$f(x) = a \ (a \ \text{constante})$	$F\left(x\right) = ax + C$	\mathbb{R}
$f\left(x\right) = x$	$F\left(x\right) = \frac{x^2}{2} + C$	\mathbb{R}
$f(x) = x^n \ (n \text{ entier } > 0)$	$F\left(x\right) = \frac{x^{n+1}}{n+1} + C$	\mathbb{R}
$f\left(x\right) = \frac{1}{x^2}$	$F(x) = -\frac{1}{x} + C$	$]-\infty$; 0[ou]0; $+\infty$ [
$f\left(x\right) = \frac{1}{x^3}$	$F(x) = -\frac{1}{2} \times \frac{1}{x^2} + C$	$]-\infty$; 0[ou]0; $+\infty$ [
$f(x) = \frac{1}{x^n} (n \text{ entier } \ge 2)$	$F(x) = -\frac{1}{n-1} \times \frac{1}{x^{n-1}} + C$	$]-\infty$; 0[ou]0; $+\infty$ [
$f\left(x\right) = \frac{1}{\sqrt{x}}$	$F\left(x\right) = 2\sqrt{x} + C$]0; +∞[
$f(x) = \frac{1}{x}$ $f(x) = e^{x}$	$F(x) = \ln x + C$	$]0;+\infty[$
$f\left(x\right) = \mathrm{e}^{x}$	$F\left(x\right) = e^{x} + C$	\mathbb{R}

Table 1 – Primitives des fonctions usuelles

Remarque: Attention! Il n'y a pas de résultats analogues sur les produits et les quotients de fonctions (ce n'était déjà pas le cas pour la dérivation).

Exercices: 4, 5 page 207; 29, 31 page 217 et 42, 43 page 218⁵ – 48, 49 page 219⁶ [Magnard]

2.4 Existence et ensemble des primitives

Théorème : (admis)

Toute fonction continue sur un intervalle I admet des primitives sur I.

Les deux résultats suivants permettent de déterminer l'ensemble des primitives d'une fonction :

Théorème : Soit f une fonction définie sur un intervalle I et F une primitive de f sur I.

- 1. Pour tout réel C, la fonction $x \longrightarrow F(x) + C$ est aussi une primitive de f sur I.
- 2. Si G est une primitive de f sur I, il existe un réel C tel que, pour tout $x \in I$:

$$G\left(x\right) = F\left(x\right) + C$$

Démonstration:

Le 1. est évident.

2. On note $\phi(x) = G(x) - F(x)$.

On a $\phi'(x) = G'(x) - F'(x) = f(x) - f(x) = 0$ sur l'intervalle I, donc la fonction ϕ est constante sur I

Il existe donc $C \in \mathbb{R}$ tel que, pour tout $x \in I$, $\phi(x) = 0$, c'est-à-dire G(x) = F(x) + C.

- 5. Primitives de fonctions usuelles.
- 6. Déterminations de primitives.

Remarque : Toute fonction continue admet donc une infinité de primitives. Toutes les primitives d'une même fonction ne diffèrent que d'une constante.

Corollaire: Soit f une fonction admettant des primitives sur un intervalle I. Soit $x_0 \in I$ et $y_0 \in \mathbb{R}$.

Il existe une et une seule primitive G de f sur l'intervalle I telle que $G(x_0) = y_0$.

Démonstration:

Soit F une primitive de f.

Toutes les primitives de f sont de la forme G(x) = F(x) + C, avec $C \in \mathbb{R}$.

On veut $G(x_0) = y_0$, c'est-à-dire $F(x_0) + C = y_0$; d'où $C = y_0 - F(x_0)$.

L'existence et l'unicité de C entraı̂ne l'existence et l'unicité de la primitive G.

Exercices: 6 page 209; 44, 45, 47 page 218 et 57 page 219 ⁷ [Magnard]

2.5 Méthodes classiques de recherche de primitives

Les résultats du tableau 2 s'obtiennent par lecture « inversée » des résultats concernant la dérivation de fonctions composées.

Dans ce tableau, u désigne une fonction dérivable sur un intervalle I.

Fonction f de la forme	Une primitive F	Commentaires
$u'.u^n$ (avec n entier > 0)	$\frac{u^{n+1}}{n+1}$	_
$\frac{u'}{u^n} \text{ (avec } n \text{ entier } \ge 2)$	$-\frac{1}{n-1} \times \frac{1}{u^{n-1}}$	$u(x) \neq 0 \text{ sur } I$
$\frac{u'}{u}$	$\ln{(u)}$	u(x) > 0 sur I
$u'.e^u$	e^u	_
$\frac{u'}{\sqrt{u}}$	$2\sqrt{u}$	u(x) > 0 sur I

Table 2 – Méthodes classiques de recherche de primitives

Exemples: 1. $f(x) = (2x+1)^5 \text{ sur } I = \mathbb{R}$

f semble de la forme $u'.u^5$ avec u(x) = 2x + 1 et u'(x) = 2.

On a donc:

$$f(x) = \frac{1}{2} \times 2 \times (2x+1)^5$$

Une primitive de f sur I est donc :

$$F(x) = \frac{1}{2} \times \frac{(2x+1)^6}{6} = \frac{(2x+1)^6}{12}$$

2. $f(x) = \frac{1}{(1-2x)^2} \text{ sur } I =]-\infty; \frac{1}{2}[$

f semble de la forme $\frac{u'}{u^2}$ avec u(x) = 1 - 2x et u'(x) = -2.

On a donc:

$$f(x) = -\frac{1}{2} \times \frac{-2}{(1-2x)^2}$$

^{7.} Ensemble de primitives.

Une primitive de f sur I est donc :

$$F(x) = -\frac{1}{2} \times \left(-\frac{1}{1 - 2x}\right) = \frac{1}{1 - 2x}$$

3. $f(x) = \frac{2}{\sqrt{1-3x}} \text{ sur } I = \left] -\infty; \frac{1}{3} \right[$

f semble de la forme $\frac{u'}{\sqrt{u}}$ avec u(x) = 1 - 3x et u'(x) = -3.

On a donc :

$$f\left(x\right) = -\frac{2}{3} \times \frac{-3}{\sqrt{1 - 3x}}$$

Une primitive de f sur I est donc :

$$F(x) = -\frac{2}{3} \times 2\sqrt{1 - 3x} = -\frac{4}{3}\sqrt{1 - 3x}$$

4. $f(x) = 3xe^{-\frac{x^2}{2}} \text{ sur } I = \mathbb{R}$

f semble de la forme $u'e^u$ avec $u(x) = -\frac{x^2}{2}$ et u'(x) = -x.

On a donc:

$$f(x) = -3 \times \left(-xe^{-\frac{x^2}{2}}\right)$$

Une primitive de f sur I est donc :

$$F\left(x\right) = -3e^{-\frac{x^{2}}{2}}$$

Exercices : 8 page 209 et 50, 51, 52, 53 page 219 et 116 page $229^8 - 55$, 57 page $219^9 - 15$, 16, 17 page 212; 79, 80 page 222 et 84, 85 page 223^{10} [Magnard]

3 Résolution d'équations différentielles

3.1 Équations de la forme $y' = ay \ (a \neq 0)$

Théorème 1 : Les solutions sur $I = \mathbb{R}$ de l'équation différentielle y' = ay sont les fonctions de la forme $x \longrightarrow ke^{ax}$, où $k \in \mathbb{R}$.

Démonstration:

Soit $f(x) = ke^{ax}$.

On a $f'(x) = kae^{ax} = af(x)$ donc f est solution de l'équation différentielle.

Réciproquement, si g est une solution de l'équation différentielle, on note $h\left(x\right)=g\left(x\right)\mathrm{e}^{-ax}.$ On a :

$$h'(x) = g'(x) e^{-ax} + (-a) g(x) e^{-ax}$$

= $ag(x) e^{-ax} - ag(x) e^{-ax} = 0$

h' est nulle sur \mathbb{R} donc il existe une constante k telle que, pour tout $x \in \mathbb{R}$, h(x) = k, c'est-à-dire $g(x) e^{-ax} = k$, d'où $g(x) = ke^{ax}$. g a donc bien la forme voulue.

Exemples : 1. Résolution sur \mathbb{R} de l'équation différentielle y' + 2y = 0

Cette équation se met sous la forme y' = -2y.

Les solutions sont donc les fonctions de la forme $f(x) = ke^{-2x}$, où $k \in \mathbb{R}$.

2. Résolution de l'équation différentielle $3y+4y^\prime=0$

Cette équation se met sous la forme $y' = -\frac{3}{4}y$.

Les solutions sont donc les fonctions de la forme $f(x) = ke^{-\frac{3}{4}x}$, où $k \in \mathbb{R}$.

^{8.} Détermination de primitive.

^{9.} Avec des conditions initiales.

^{10.} Transformation de forme pour déterminer une primitive.

Théorème 2 : Pour tout couple de réels $(x_0; y_0)$, il existe une unique solution f de l'équation différentielle y' = ay sur $I = \mathbb{R}$ vérifiant $f(x_0) = y_0$.

Démonstration:

Les solutions sont de la forme $f(x) = ke^{ax}$.

$$f(x_0) = y_0 \iff ke^{ax_0} = y_0 \iff k = y_0e^{-ax_0}$$

On a trouvé une seule valeur de la constante k, d'où l'unicité de la solution.

Remarque: Dans ce cas, la solution est:

$$f(x) = y_0 e^{-ax_0} e^{ax} = y_0 e^{-ax_0 + ax} = y_0 e^{a(x - x_0)}$$

Exemple : Déterminer la solution f de l'équation différentielle 2y' - 5y = 0 telle que f(2) = 3

L'équation différentielle se met sous la forme $y' = \frac{5}{2}y$.

Les solutions sont donc de la forme $f(x) = ke^{\frac{5}{2}x}$.

De plus, on veut que f(2) = 3, c'est-à-dire $ke^5 = 3$. D'où $k = 3e^{-5}$ et $f(x) = 3e^{\frac{5}{2}x - 5}$.

Exercices : 10, 11 page 211; 18 page 213 et 59, 60, 61, 64 page $220^{11} - 20$, 21 page 214; 63, 65 page 220; 71, 73 page 221; 88, 91 page 223 et 95 page 224^{12} [Magnard]

3.2 Équations de la forme y' = ay + b (a et b non nuls)

Théorème : 1. Les solutions sur $I = \mathbb{R}$ de l'équation différentielle y' = ay + b sont les fonctions de la forme $x \longrightarrow ke^{ax} - \frac{b}{a}$, où $k \in \mathbb{R}$.

2. Pour tout couple de réels $(x_0; y_0)$, il existe une unique solution f de l'équation différentielle y' = ay + b sur $I = \mathbb{R}$ vérifiant $f(x_0) = y_0$.

Remarque : La fonction constante $x \longrightarrow -\frac{b}{a}$ est appelée solution particulière de l'équation.

Toute solution de l'équation se met donc sous la forme de la somme d'une solution de l'équation y' = ay et de la solution particulière.

Démonstration (partielle):

On montre facilement que toute fonction ayant la forme proposée est solution de l'équation différentielle.

Réciproquement, si f est solution de l'équation différentielle, on pose $g(x) = f(x) + \frac{b}{a}$. On a : g'(x) = f'(x) et comme f solution de l'équation différentielle, f'(x) = af(x) + b. d'où :

$$g'(x) = af(x) + b$$

$$= a\left[g(x) - \frac{b}{a}\right] + b$$

$$= ag(x) - b + b$$

$$= ag(x)$$

Par suite, d'après 3.1 il existe $k \in \mathbb{R}$ tel que $g\left(x\right) = k\mathrm{e}^{ax}$. Par suite :

$$f(x) = g(x) - \frac{b}{a} = ke^{ax} - \frac{b}{a}$$

La deuxième partie du théorème se prouve par une méthode analogue à celle du 3.1.

Exercices : 12, 13 page 211; 19 page 213 et 66, 67, 69 page $220^{13} - 72$, 75 page 221; 92 page 223 et 83 page $224^{14} - 106$, 107 page $226^{15} - 22$, 23, 27 page 215 et 97, 98 page 224^{16} [Magnard]

- 11. Résolution d'équations différentielles de la forme y' = ay.
- 12. Modéliser des phénomènes.
- 13. Résolution d'équations différentielles de la forme y' = ay.
- Modéliser des phénomènes.
- 15. Exercices-bilan.
- 16. Complément : résolution d'équations différentielles de la forme $y' = ay + \varphi$, où φ est une fonction.

RÉFÉRENCES RÉFÉRENCES

Références

[Magnard] Maths Tle Spécialité, MAGNARD, 2020

2, 3, 4, 5, 6