Applications géométriques des nombres complexes

Christophe ROSSIGNOL*

Année scolaire 2021/2022

Table des matières

1	Non	mbres complexes de module 1	2
	1.1	L'ensemble $\mathbb U$	2
	1.2	Racines n -ièmes de l'unité	2
2	Dist	tances et angles orientés	3
3	Car	actérisation des cercles et des médiatrices	5
Table des figures			
	1	Triangle rectangle isocèle direct	4
	2	Triangle équilatéral	4

^{*}Ce cours est placé sous licence Creative Commons BY-SA http://creativecommons.org/licenses/by-sa/2.0/fr/

Dans tout ce chapitre, le plan est muni d'un repère orthonormal direct $(O; \overrightarrow{u}; \overrightarrow{v})$

1 Nombres complexes de module 1

1.1 L'ensemble \mathbb{U}

Définition : On note \mathbb{U} l'ensemble des nombres complexes de module 1. Par unicité de la forme exponentielle, on a $\mathbb{U} = \{e^{i\theta}, \theta \in \mathbb{R}\}.$

Exemples:

 $-1; -1; i; -i; e^{i\frac{\pi}{4}} = \frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i; e^{-i\frac{\pi}{3}} = \frac{1}{2} - \frac{\sqrt{3}}{2}i; \text{ etc. sont des éléments de } \mathbb{U}.$ - 1 + *i* n'est pas un élément de \mathbb{U} .

 $\textbf{Remarque:} \ \ \text{Graphiquement, l'ensemble} \ \ \mathbb{U} \ \ \text{correspond au } \ \ \text{cercle trigonom\'etrique.}$

Propriété : Soit $z, z' \in \mathbb{U}$. Alors $zz' \in \mathbb{U}$ et $\frac{1}{z} \in \mathbb{U}$.

Démonstration:

On a |z| = 1 et |z'| = 1.

$$|zz'| = |z| \times |z'| = 1 \times 1 = 1$$
$$\left|\frac{1}{z}\right| = \frac{1}{|z|} = \frac{1}{1} = 1$$

1.2 Racines n-ièmes de l'unité

Définition: Soit $n \in \mathbb{N}^*$.

On appelle racine n-ième de l'unité tout nombre complexe z tel que $z^n = 1$.

On note \mathbb{U}_n l'ensemble des racines $n\text{-}\mathrm{i\grave{e}mes}$ de l'unité.

Exemples: $\mathbb{U}_1 = \{1\} \text{ et } \mathbb{U}_2 = \{-1; 1\}.$

Propriété: $\mathbb{U}_n = \left\{ e^{\frac{2ki\pi}{n}}, k \in \{0; 1; 2; \dots; n-1\} \right\}$

Démonstration:

Comme $z^n = 1$, on a $|z^n| = 1 \iff |z|^n = 1$.

Comme |z| est un nombre réel positif, on a donc |z| = 1.

On peut donc noter $z = e^{i\theta}$.

$$z^n = 1 \iff e^{in\theta} = e^0 \iff n\theta = 0 \ [2\pi] \iff n\theta = 0 + 2k\pi, \ k \in \mathbb{Z} \iff \theta = \frac{2k\pi}{n}, \ k \in \mathbb{Z}$$

De plus, comme $z^n = 1$ est une équation polynomiale de degré n, elle admet au plus n solutions.

On a donc : $\mathbb{U}_n = \left\{ e^{\frac{2ki\pi}{n}}, k \in \{0; 1; 2; \dots; n-1\} \right\}$

Exemples:
$$\mathbb{U}_3 = \left\{1 \, ; \, \mathrm{e}^{\frac{2i\pi}{3}} \, ; \, \mathrm{e}^{\frac{4i\pi}{3}} \right\} \, \mathrm{et} \, \mathbb{U}_3 = \left\{1 \, ; \, \mathrm{e}^{\frac{2i\pi}{4}} \, ; \, \mathrm{e}^{\frac{4i\pi}{4}} \, ; \, \mathrm{e}^{\frac{6i\pi}{4}} \right\} = \{1 \, ; \, i \, ; \, -1 \, ; \, -i\}.$$

Remarque : Les racines n-ièmes de l'unité sont les sommets d'un polygone régulier à n côtés, inscrit dans le cercle trigonométrique.

Exercices: 21, 22 page 57 et 78, 79 page 64 ¹ [Magnard]

^{1.} Racines n-ièmes de l'unité.

2 Distances et angles orientés

Théorème : Soient A, B, C et D quatre points d'affixes respectives z_A , z_B , z_C et z_D .

- 1. $AB = |z_B z_A|$
- 2. Si $z_A \neq z_B$, $(\overrightarrow{u}; \overrightarrow{AB}) = \arg(z_B z_A)$
- 3. Si $z_A \neq z_B$ et $z_C \neq z_D$, $\left(\overrightarrow{AB}\,;\,\overrightarrow{CD}\right) = \arg\left(\frac{z_D z_C}{z_B z_A}\right)$

Démonstration:

On supposera que A et B ne sont pas confondus (c'est-à-dire $z_A \neq z_B$). Soit M le point tel que $\overrightarrow{OM} = \overrightarrow{AB}$. L'affixe de M est $z_B - z_A$.

OM = AB. Lamixe de M est $z_B - z_A$. Par définition de la forme trigonométrique des nombres complexes, on a : $\begin{cases} OM = |z_B - z_A| \\ \left(\overrightarrow{u}; \overrightarrow{OM}\right) = \arg(z_B - z_A) \end{cases}$

Par suite : $AB = OM = |z_B - z_A|$ et $(\overrightarrow{u}; \overrightarrow{AB}) = (\overrightarrow{u}; \overrightarrow{OM}) = \arg(z_B - z_A)$. De plus, si C et D ne sont pas confondus (c'est-à-dire $z_C \neq z_D$) :

$$(\overrightarrow{AB}; \overrightarrow{CD}) = (\overrightarrow{AB}; \overrightarrow{u}) + (\overrightarrow{u}; \overrightarrow{CD})$$

$$= (\overrightarrow{u}; \overrightarrow{CD}) - (\overrightarrow{u}; \overrightarrow{AB})$$

$$= \arg(z_D - z_C) - \arg(z_B - z_A)$$

$$= \arg\left(\frac{z_D - z_C}{z_B - z_A}\right)$$

Remarques: 1. Les points A, B et C sont alignés si et seulement si $\arg\left(\frac{z_C-z_A}{z_B-z_A}\right)=0$ [π] (c'est-à-dire $\frac{z_C-z_A}{z_B-z_A}$ réel).

2. Les droites (AB) et (CD) sont perpendiculaires si et seulement si $\arg\left(\frac{z_D-z_C}{z_B-z_A}\right)=\frac{\pi}{2}$ [π] (c'est-à-dire $\frac{z_D-z_C}{z_B-z_A}$ imaginaire pur).

Remarques: 1. Les points A, B et C sont alignés si et seulement si $\arg\left(\frac{z_C-z_A}{z_B-z_A}\right)=0$ [π] (c'est-à-dire $\frac{z_C-z_A}{z_B-z_A}$ réel).

2. Les droites (AB) et (CD) sont perpendiculaires si et seulement si $\arg\left(\frac{z_D-z_C}{z_B-z_A}\right)=\frac{\pi}{2}\left[\pi\right]$ (c'est-à-dire $\frac{z_D-z_C}{z_B-z_A}$ imaginaire pur).

Un cas particulier important: Si A, B et M sont trois points distincts d'affixes respectives a, b et z, alors $(\overrightarrow{MA}; \overrightarrow{MB}) = \arg\left(\frac{b-z}{a-z}\right)$. Or, $\frac{b-z}{a-z} = \frac{z-b}{z-a}$ donc:

$$(\overrightarrow{MA}; \overrightarrow{MB}) = \arg\left(\frac{z-b}{z-a}\right)$$

Remarque : Cette relation est utilisée pour déterminer des ensembles de points.

Applications: Triangles particuliers

Dans la suite, A, B et C désignent trois points d'abscisses respectives z_A , z_B et z_C .

1. Triangle rectangle rectangle isocèle direct (voir figure 1)

$$ABC$$
 triangle rectangle isocèle direct en $A \iff \frac{z_C - z_A}{z_B - z_A} = i$

2. Triangle équilatéral (voir figure 2)

$$ABC$$
 triangle équilatéral direct $\iff \frac{z_C - z_A}{z_B - z_A} = e^{i\frac{\pi}{3}}$

3

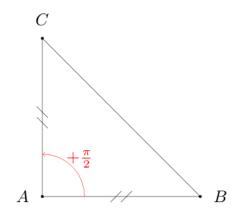
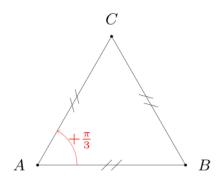


FIGURE 1 – Triangle rectangle isocèle direct



 ${\bf FIGURE} \ 2 - {\bf Triangle} \ {\bf \acute{e}quilat\acute{e}ral}$

Exercices: 23, 24 page 57; 81, 84, 85 page 64² – 27, 28 page 59; 53 page 63; 82, 83, 86, 87 page 64³ – 100; 102; 103, 104, 108 page 66⁴ – 106 page 66; 109 page 67 et 123 page 68⁵ [Magnard]

3 Caractérisation des cercles et des médiatrices

Propriété 1 : Soit \mathcal{C} le cercle de centre Ω d'affixe ω et de rayon R. Le point M d'affixe z est sur le cercle \mathcal{C} si et seulement si $|z - \omega| = R$.

Démonstration:

$$M \in \mathcal{C} \iff \Omega M = R \iff |z - \omega| = R$$

Remarque : $|z - \omega| = R$ si et seulement si il existe $\theta \in \mathbb{R}$ tel que $z - \omega = Re^{i\theta}$, c'est-à-dire $z = \omega + Re^{i\theta}$.

Propriété 2 : Équation paramétrique complexe d'un cercle

Soit \mathcal{C} le cercle de centre Ω d'affixe ω et de rayon R.

Le point M d'affixe z est sur le cercle C si et seulement si il existe $\theta \in \mathbb{R}$ tel que $z = \omega + Re^{i\theta}$.

Propriété 3 : Soient A et B deux points d'affixes respectives a et b. On note Δ la médiatrice de [AB]. Le point M d'affixe z est sur Δ si et seulement si |z-a|=|z-b|.

Démonstration:

 $M\in\Delta\Longleftrightarrow M$ équisistant de A et de $B\Longleftrightarrow AM=BM\Longleftrightarrow |z-a|=|z-b|$

Exercices: 111, 113, 114, 116 page 67 et 121 page 68 ⁶ [Magnard]

Références

[Magnard] Maths Tle Expertes, Magnard, 2020

2, 5

^{2.} Alignement, colinéarité.

^{3.} Configurations du plan.

^{4.} Nombres complexes et géométrie.

^{5.} Suites de nombres complexes.

^{6.} Ensembles de points.